DigiByte价格

(欧元)
€0.0058751
-- (--)
EUR
市值
€1.06亿
流通总量
179.52亿 / 210亿
历史最高价
€0.15808
24 小时成交量
€330.59万
评级
3.6 / 5
DGBDGB
EUREUR

了解DigiByte

DigiByte(DGB)是一个专为速度、安全性和可扩展性设计的去中心化区块链。作为一个社区驱动的项目,它采用五种不同的挖矿算法来增强安全性和去中心化特性。DigiByte具备15秒的交易确认时间和低廉的手续费,优化了日常支付和数字交易场景。其210亿枚DGB的固定发行总量确保了稀缺性,类似比特币模型但更具普及性。核心创新是DigiDollar——一种去中心化稳定币,用户可将DGB作为抵押品锚定美元代币,在保持价格稳定的同时继承了DigiByte快速、免信任的基础设施优势。这使DGB兼具交易资产和去中心化金融(DeFi)储备货币的双重属性。
本内容由 AI 生成
PoW
CertiK
最后审计日期:--

免责声明

本页面的社交内容 (包括由 LunarCrush 提供支持的推文和社交统计数据) 均来自第三方,并按“原样”提供,仅供参考。本文内容不代表对任何数字货币或投资的认可或推荐,也未获得欧易授权或撰写,也不代表我们的观点。我们不保证所显示的用户生成内容的准确性或可靠性。本文不应被解释为财务或投资建议。在做出投资决策之前,评估您的投资经验、财务状况、投资目标和风险承受能力并咨询独立财务顾问至关重要。过去的表现并不代表未来的结果。您的投资价值可能会波动,您可能无法收回您投资的金额。您对自己的投资选择自行承担全部责任,我们对因使用本信息而造成的任何损失或损害不承担任何责任。提供外部网站链接是为了用户方便,并不意味着对其内容的认可或控制。

请参阅我们的 使用条款风险警告,了解更多详情。通过使用第三方网站(“第三方网站”),您同意对第三方网站的任何使用均受第三方网站条款的约束和管辖。除非书面明确说明,否则欧易及其关联方(“OKX”)与第三方网站的所有者或运营商没有任何关联。您同意欧易对您使用第三方网站而产生的任何损失、损害和任何其他后果不承担任何责任。请注意,使用第三方网站可能会导致您的资产损失或贬值。本产品可能无法在所有司法管辖区提供或适用。

DigiByte 的价格表现

近 1 年
+1.48%
€0.01
3 个月
-23.81%
€0.01
30 天
-15.65%
€0.01
7 天
-14.65%
€0.01

DigiByte 社交媒体动态

Jared Tate ©️
Jared Tate ©️
💼 今天是钱包星期三——让我们讨论加密货币冷存储的力量 在加密货币中,有一条永恒的黄金法则: **没有你的私钥,就没有你的币。** 🔑 让我们谈谈这到底意味着什么——以及为什么“冷存储”是保护你的 $DGB、$BTC 和任何真正去中心化的加密资产的最强大工具之一。 --- ### ❄️ 什么是冷存储? 简单来说,“冷存储”意味着将你的私钥 **完全离线**——与互联网、黑客和第三方断开连接。 当你的加密钱包或私钥从未接触过实时网络时,几乎不可能被任何人远程盗取或破坏。 可以这样理解: 🧊 冷 = 离线 = 安全 🔥 热 = 在线 = 风险 大多数黑客攻击、交易所损失或钱包被盗都是因为私钥存储在网上或由中心化服务控制。冷存储解决了这个问题。 --- ### 🧠 冷存储的真实案例 对于 DigiByte ($DGB)、比特币 ($BTC) 和其他基于 UTXO 的区块链,真正的冷存储意味着 **你** 直接控制你的私钥。 最简单和最可信的形式是运行在离线或隔离计算机上的 **核心钱包**: - 🖥 下载 **DigiByte Core v8.26** → - 🔐 加密你的钱包并 **备份你的 wallet.dat** 文件 - 📴 将计算机与互联网断开 - 💾 安全存储备份——在 USB 驱动器、加密的 SD 卡,或甚至纸上,完全离线存放在 3 个物理分开的地方 这是真正的主权控制。你的私钥永远不会离开你的掌控。你的币永远不依赖于第三方。 --- ### 🧱 其他冷存储方法 1️⃣ **硬件钱包:** 像 Ledger 或 Trezor 这样的设备将私钥保存在安全芯片内,适合偶尔交易的长期持有者。BitFi 也是另一种解决方案,甚至不存储私钥。 2️⃣ **纸钱包:** 一种老派但有效的方法——离线生成私钥并打印或刻录它们。 3️⃣ **隔离系统:** 专用的离线笔记本电脑或 Raspberry Pi 设备,仅用于签署交易和存储私钥。 4️⃣ **多重签名保险库:** 多个私钥存储在不同的离线位置——非常适合家庭、基金会或组织。 每种方法在便利性、安全性和成本上都有权衡,但都遵循同一原则:**你的私钥永远不会接触互联网。** --- ### ⚡️ 为什么冷存储很重要 加密货币不是关于信任第三方——而是关于 **消除它们。** 每一次中心化交易所的黑客攻击、每一次钱包的漏洞、每一次冻结的提款都教会了我们同样痛苦的教训: 当你依赖其他人来保管你的币时,你并不拥有它们。 冷存储是财务独立。 冷存储是数字自我主权。 冷存储是自由。 🕊️ --- ### 🔒 如何开始 如果你从未这样做过,可以从简单的开始: - 下载 **DigiByte Core v8.26** → - 创建一个新钱包 - 加密它 - 备份你的 wallet.dat - 离线存储——**多个副本,多个位置** 你会感到一种新的信心,知道没有人——无论是交易所、黑客还是政府——可以触碰你的加密货币。 这就是真正去中心化的意义。 --- ### 💬 最后想法 热钱包是用来消费的。 冷钱包是用来 *保存* 的。 在一个中心化失败不断重演的世界中,冷存储不仅仅是一种安全措施——它是 **独立的声明。** 运行你的核心钱包。 持有你的私钥。 做你自己的保险库。 做你自己的银行。 #WalletWednesday #DigiByte #Bitcoin #ColdStorage #CryptoFreedom #Decentralization #P2P
Jared Tate ©️
Jared Tate ©️
💠 今天是钱包星期三! — 让我们在 DigiByte 区块链上讨论 $DGB 隐私和 Dandelion++ 当人们谈论隐私币时,他们常常提到 Zcash ($ZEC)、Monero ($XMR) 或 Dash ($DASH)。 但你知道吗,DigiByte ($DGB) 在大多数其他币种之前就悄然实现了强大的网络级隐私——这些功能在 Bitcoin ($BTC) 或 Litecoin ($LTC) 中从未见过? 这被称为 Dandelion++,它直接内置于 DigiByte Core 中。🌼 🧠 简单解释 每当你发送区块链交易时,它需要通过网络传播(“传播”),以便矿工可以确认它。 在 Bitcoin 或 Litecoin 中,这种传播模式是可预测的——这意味着间谍或监视节点有时可以追踪到你的 IP 地址。 DigiByte 的 Dandelion++ 改变了这一点。 它首先通过几个随机节点悄悄发送你的交易——就像沿着隐秘路径传递秘密——然后最终广播给所有人。 这使得攻击者几乎不可能追踪交易的来源或将其与您的 IP 关联。 想象一下: 🌱 干茎阶段 — 你的交易悄悄地跳过几个随机的对等节点。 ☁️ 蓬松阶段 — 然后它在整个网络中广播(“蓬松”)。 ⚙️ 技术概述 Dandelion++ 在网络层提供正式的匿名性保证。 它的工作原理如下: 1️⃣ 干茎阶段:交易沿着选定对等节点的单一路径随机中继。 2️⃣ 蓬松阶段:经过几次跳跃后,交易使用标准的洪泛传播进行广播。 3️⃣ 两个目的地:DigiByte 增加冗余——交易在两个出站对等节点之间选择以确保可靠性。 4️⃣ 禁运系统:增加随机时间延迟以进一步打破时间分析。 5️⃣ 通过特殊库存消息发现:确保即使某些节点失败也能传播。 6️⃣ 干茎池:单独的内存池隔离待处理的“干茎”交易,直到它们准备好蓬松。 结果是什么? DigiByte 提供协议级别的匿名性,而不需要隐私币的监管复杂性——同时保持完全透明和合规。 当你将 Dandelion++ + Taproot 结合起来时,DigiByte 实现了交易级别的效率和网络级别的隐私——这是任何主要 UTXO 区块链的首次。⚡️ 🧭 今天在 v8.26 中使用 Dandelion: #WalletWednesday #DigiByte #Bitcoin #Zcash #Monero #Dash #Taproot #Privacy #Dandelion #BlockchainEducation
countx 📈🚀
countx 📈🚀
$BTC $ZEC $LTC $DASH $XNO $DGB 你收到我的消息了吗 🥇

快捷导航

DigiByte购买指南
开始入门数字货币可能会让人觉得不知所措,但学习如何购买比您想象的要简单。
预测 DigiByte 的价格走势
DigiByte 未来几年值多少?看看社区热议,参与讨论一波预测。
查看 DigiByte 的价格历史
追踪 DigiByte 代币的价格历史,实时关注持仓表现。您可以通过下方列表快捷查看开盘价、收盘价、最高价、最低价及交易量。
持有 DigiByte 仅需三步

免费创建欧易账户

为账户充值

选择要购买的代币

欧易提供 60 余种欧元交易对,助您优化资产的多元配置

DigiByte 常见问题

目前,一个 DigiByte 价值是 €0.0058751。如果您想要了解 DigiByte 价格走势与行情洞察,那么这里就是您的最佳选择。在欧易探索最新的 DigiByte 图表,进行专业交易。
数字货币,例如 DigiByte 是在称为区块链的公共分类账上运行的数字资产。了解有关欧易上提供的数字货币和代币及其不同属性的更多信息,其中包括实时价格和实时图表。
由于 2008 年金融危机,人们对去中心化金融的兴趣激增。比特币作为去中心化网络上的安全数字资产提供了一种新颖的解决方案。从那时起,许多其他代币 (例如 DigiByte) 也诞生了。
查看 DigiByte 价格预测页面,预测未来价格,帮助您设定价格目标。

深度了解DigiByte

DigiByte 旨在成为一种更快的数字货币,使用可用于数字资产、智能合约、去中心化应用程序和安全身份验证的创新区块链。

ESG 披露

ESG (环境、社会和治理) 法规针对数字资产,旨在应对其环境影响 (如高能耗挖矿)、提升透明度,并确保合规的治理实践。使数字代币行业与更广泛的可持续发展和社会目标保持一致。这些法规鼓励遵循相关标准,以降低风险并提高数字资产的可信度。
资产详情
名称
OKCoin Europe Ltd
相关法人机构识别编码
54930069NLWEIGLHXU42
代币名称
DigiByte
共识机制
DigiByte is present on the following networks: Digibyte, Tron. DigiByte employs a multi-algorithm Proof of Work (PoW) consensus model with five separate hashing algorithms, offering greater security and decentralization than single-algorithm blockchains. These five algorithms are SHA-256, Scrypt, Qubit, Skein, and Groestl. Core Components of DigiByte’s Consensus: 1. Multi-Algorithm Design: a. The use of five distinct PoW algorithms allows a diverse range of miners with various types of hardware (ASICs, GPUs, FPGAs) to participate in securing the network. b. By spreading mining power across multiple algorithms, DigiByte minimizes the risk of any single mining group controlling the network. This multi-algorithm approach protects against 51% attacks by making it more difficult for a malicious actor to control a majority of the network’s hash power. 2. Real-Time Difficulty Adjustment: a. DigiByte uses Dynamic Difficulty Adjustment for each algorithm individually. This means that the difficulty level for each algorithm can adjust in real-time based on network conditions and hashing power. b. The system prevents any single algorithm from producing blocks faster than others, ensuring even distribution of block production across all algorithms and preventing sudden spikes in mining difficulty. 3. Segregated Chain for Security: a. DigiByte implements a unique multi-layered blockchain structure that segments the blockchain to allow faster validation and improved security. b. The use of separate algorithms in a layered approach reduces the chance of a blockchain split or double-spend attacks and increases the blockchain’s scalability. The Tron blockchain operates on a Delegated Proof of Stake (DPoS) consensus mechanism, designed to improve scalability, transaction speed, and energy efficiency. Here's a breakdown of how it works: 1. Delegated Proof of Stake (DPoS): Tron uses DPoS, where token holders vote for a group of delegates known as Super Representatives (SRs)who are responsible for validating transactions and producing new blocks on the network. Token holders can vote for SRs based on their stake in the Tron network, and the top 27 SRs (or more, depending on the protocol version) are selected to participate in the block production process. SRs take turns producing blocks, which are added to the blockchain. This is done on a rotational basis to ensure decentralization and prevent control by a small group of validators. 2. Block Production: The Super Representatives generate new blocks and confirm transactions. The Tron blockchain achieves block finality quickly, with block production occurring every 3 seconds, making it highly efficient and capable of processing thousands of transactions per second. 3. Voting and Governance: Tron’s DPoS system also allows token holders to vote on important network decisions, such as protocol upgrades and changes to the system’s parameters. Voting power is proportional to the amount of TRX (Tron’s native token) that a user holds and chooses to stake. This provides a governance system where the community can actively participate in decision-making. 4. Super Representatives: The Super Representatives play a crucial role in maintaining the security and stability of the Tron blockchain. They are responsible for validating transactions, proposing new blocks, and ensuring the overall functionality of the network. Super Representatives are incentivized with block rewards (newly minted TRX tokens) and transaction feesfor their work.
奖励机制与相应费用
DigiByte is present on the following networks: Digibyte, Tron. DigiByte incentivizes network participation and security through block rewards, transaction fees, and a deflationary schedule for block rewards. Incentive Mechanisms: 1. Block Rewards for Miners: a. Miners receive newly minted DGB tokens for successfully mining blocks. This block reward encourages miners to contribute computing power to secure the network and validate transactions. b. DigiByte’s block rewards follow a deflationary schedule, decreasing over time, which promotes long-term value by controlling the rate of token issuance. 2. Transaction Fees: a. Users pay transaction fees in DGB tokens for network activities. These fees are distributed to miners, providing them with an ongoing income source and incentivizing efficient transaction processing. 3. Real-Time Difficulty Adjustment: a. Difficulty adjustments are calculated based on the hashing power of each algorithm, ensuring fair distribution of rewards and reducing the risk of a single mining pool or participant dominating the network’s hashing power. Applicable Fees: Transaction fees on DigiByte are calculated based on network demand, with miners prioritizing transactions with higher fees during congested periods. The larger block size reduces overall fees, supporting affordability for users. The Tron blockchain uses a Delegated Proof of Stake (DPoS) consensus mechanism to secure its network and incentivize participation. Here's how the incentive mechanism and applicable fees work: Incentive Mechanism: 1. Super Representatives (SRs) Rewards: Block Rewards: Super Representatives (SRs), who are elected by TRX holders, are rewarded for producing blocks. Each block they produce comes with a block reward in the form of TRX tokens. Transaction Fees: In addition to block rewards, SRs receive transaction fees for validating transactions and including them in blocks. This ensures they are incentivized to process transactions efficiently. 2. Voting and Delegation: TRX Staking: TRX holders can stake their tokens and vote for Super Representatives (SRs). When TRX holders vote, they delegate their voting power to SRs, which allows SRs to earn rewards in the form of newly minted TRX tokens. Delegator Rewards: Token holders who delegate their votes to an SR can also receive a share of the rewards. This means delegators share in the block rewards and transaction fees that the SR earns. Incentivizing Participation: The more tokens a user stakes, the more voting power they have, which encourages participation in governance and network security. 3. Incentive for SRs: SRs are also incentivized to maintain the health and performance of the network. Their reputation and continued election depend on their ability to produce blocks consistently and efficiently process transactions. Applicable Fees: 1. Transaction Fees: Fee Calculation: Users must pay transaction fees to have their transactions processed. The transaction fee varies based on the complexity of the transaction and the network's current demand. This is paid in TRX tokens. Transaction Fee Distribution: Transaction fees are distributed to Super Representatives (SRs), giving them an ongoing income to maintain and support the network. 2. Storage Fees: Tron charges storage fees for data storage on the blockchain. This includes storing smart contracts, tokens, and other data on the network. Users are required to pay these fees in TRX tokens to store data. 3. Energy and Bandwidth: Energy: Tron uses a resource model that allows users to access network resources like bandwidth and energy through staking. Users who stake their TRX tokens receive "energy," which is required to execute transactions and interact with smart contracts. Bandwidth: Each user is allocated a certain amount of bandwidth based on their TRX holdings. If users exceed their allotted bandwidth, they can pay for additional bandwidth in TRX tokens.
信息披露时间段的开始日期
2024-10-14
信息披露时间段的结束日期
2025-10-14
能源报告
能源消耗
246193686.72158 (kWh/a)
可再生能源消耗
29.306425039 (%)
能源强度
4.39588 (kWh)
主要能源来源与评估体系
To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/share-electricity-renewables.
能源消耗来源与评估体系
The energy consumption of this asset is aggregated across multiple components: For the calculation of energy consumptions, the so called 'top-down' approach is being used, within which an economic calculation of the miners is assumed. Miners are persons or devices that actively participate in the proof-of-work consensus mechanism. The miners are considered to be the central factor for the energy consumption of the network. Hardware is pre-selected based on the consensus mechanism's hash algorithm: multiple. A current profitability threshold is determined on the basis of the revenue and cost structure for mining operations. Only Hardware above the profitability threshold is considered for the network. The energy consumption of the network can be determined by taking into account the distribution for the hardware, the efficiency levels for operating the hardware and on-chain information regarding the miners' revenue opportunities. If significant use of merge mining is known, this is taken into account. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts. To determine the energy consumption of a token, the energy consumption of the network(s) tron is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.
排放报告
DLT 温室气体排放范围一:可控排放
0.00000 (tCO2e/a)
DLT 温室气体排放范围二:外购排放
101430.82924 (tCO2e/a)
温室气体排放强度
1.81108 (kgCO2e)
主要温室气体来源与评估体系
To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0.
市值
€1.06亿
流通总量
179.52亿 / 210亿
历史最高价
€0.15808
24 小时成交量
€330.59万
评级
3.6 / 5
DGBDGB
EUREUR
SEPA 免费充值,轻松买入DigiByte